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Coherent and incoherent laser control of photochemical reactions 

by MOSHE SHAPIRO 
Chemical Physics Department, Weizmann Institute of Science, 

Rehovot, Israel 76100 

and PAUL BRUMER 
Chemistry Physics Theory Group, Department of Chemistry, 

University of Toronto, Toronto, Canada M5S 1Al 

Coherent radiative control provides a quantum-interference-based method for 
controlling molecular dynamics. This theory is reviewed and applications to a 
variety of processes including photodissociation, asymmetric synthesis and the 
control of currents in semiconductors are discussed. State-of-the-art computations 
on the photodissociation of CH,I, IBr, Na, and H,O are presented to show that a 
wide range of yield control is possible under suitable laboratory conditions. The role 
of coherent relative laser phase is emphasized and, in a most recent development, 
shown to be insignificant in appropriately designed high-field control experiments. 

1. Introduction 
Selectivity is at the heart of chemistry and the control of reactions using lasers has 

been a goal for decades. Recently, we [l-201 and other groups [21-30] have 
demonstrated theoretically that one can achieve this goal by using quantum 
interference phenomena. We showed that phases acquired by a quantum systems while 
excited by lasers enable one to control quantum interferences, and hence the outcome 
of many dynamical processes. Initial experimental tests [3 1-36] of our approach, 
termed coherent control, confirm many of the theoretical predictions and prove the 
viability of the method. 

The purpose of this review is to provide an introduction to the concepts (for a 
discussion of the basic principles of coherence, quantum interference and time 
dependence, which are fundamental to coherent control see, for example, [37]) 
underlying coherent control and to discuss its current status in both chemistry and 
physics. Section 1 provides an introduction to the basics of coherent control, followed 
by a detailed discussion of two control scenarios in $ 2. In $ 3 we discuss selection rules 
to control and in $4 the issue of control of a thermal ensemble. Section 5 describes the 
control of symmetry breaking, and $6 describes the production of photocurrents in 
semiconductors. Finally, in $ 7 we discuss extensions of coherent control to the strong- 
laser-field domain. 

1.2. Aspects of scattering theory and reaction dynamics 
The processes that we wish to control include branching ‘half-collisions, 

ABC+A + BC (1) 
+AB+C, 

and ‘full’ collisions, 
A +  BC(rn)+A + BC(rn’) 

4AB(rn”) + C.  (4) 
0144-235X/94 $10.00 Q 1994 Taylor & Francis Ltd 
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188 M. Shapiro and P.  Brumer 

In the above, A, B and C are atoms, groups of atoms, electrons or photons, m and m’ 
denote the internal (vibrational, rotational and photon occupation) quantum numbers 
of the reactants or products. 

Given Y(t=O), the system wavefunction at an initial time, the evolution of the 
system is determined by the time-dependent material Schrodinger equation 

where H ,  is the system Hamiltonian. The wavefunction at  long times, that is when the 
products are well separated, provides the probabilities of forming the products. The 
approach to be followed here consists of expressing the time evolution in terms of lEi), 
the solutions of the time-independent Schrodinger equation 

ffM1Ei) = EiIEf), (6) 
The long-time behaviour of Y(u(t) is intimately connected with the nature of the time- 

independent continuum energy eigenstates. For every continuum energy value E,  each 
of the possible outcomes observed in the product region is represented by an 
independent wavefunction. The fact that such a set of degenerate wavefunctions of the 
separated products exists implies the existence of a set of degenerate eigenfunctions of 
the total Hamiltonian (which is the asymptotic condition of scattering theory [38]), and 
a one-to-one correlation between the two sets. This ‘boundary’ condition is expressed 
more precisely by denoting the different possible chemical products of the break-up of 
ABC in equation (2) by an index q (e.g. q = 1 denotes the A + BC products), and all 
additional identifying state labels by m. The set of continuum eigenfunctions of the 
material Hamiltonian 

H,lE,rn,q-)=EIE,m,q-) (7) 

is now defined via the requirement that asymptotically every IE, m, q - )  state goes over 
to a state of the separated products, denoted (E, m, qo) ,  which is of energy E, chemical 
identity q and remaining quantum numbers m. The ‘minus’ superscript serves to 
indicate this choice of boundary condition. 

The description of the system in terms of JE, rn, q - )  has an important advantage. 
Expressing the state of the system in the present in terms of these states, that is writing 
and initial continuum state as 

means that we know the fate of the system in the future. Since each of the IE,rn,q-) 
states correlates with a single product state, the probability of observing each IE, m, 4’) 
product state is simply given by Ic,,(E)I2, the preparation probabilities. The probability 
of producing a chemical product q in the future is therefore given as 

The fact that the state of the system in the distant future is pre-determined by the 
initially created state is, admittedly, intuitively obvious. However, the consequences of 
this simple fact are often ignored. For example, arguments such as ‘intramolecular 
energy scrambling makes reaction control difficult’, are misleading: a general wave 
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Laser control of photochemical reactions 189 

packet may show wondrously complicated temporal behaviour, and yet equation (9) 
tells us that the probability of producing product q in the long-time limit is merely the 
energy average of the preparation probabilities. Since the preparation coefficients are 
also determined by the energy eigenstates, we see that the long-time limit is an average 
property of the states which make up a given wave packet. 

Another consequence of equation (9) is that pulse shaping which merely changes the 
phases of the preparation coefficients will have absolutely no effect on the q products 
yields [13]. Likewise, shortening of a pulse, which results in broadening of the power 
spectrum of that pulse, will modify the c,,,(E) coefficients to all the q channels and will 
not necessarily 'help beat out IVR'. 

Below we demonstrate that the key to laser control is to change one c,,,(E) 
coefficient relative to another C ~ , , ~ ( E )  coefficient at  the same energy. In order to 
understand how this can be done we discuss now the process of preparation. 

1.2. Perturbation theory, system preparation and coherence 
Consider the effect of an electric field on an initially bound molecule. The molecule 

is assumed to be in an eigenstate IE,) of the radiation-free Hamiltonian HM before 
being subjected to a perturbing incident radiation field &(t). The overall Hamiltonian is 
then given by 

where d is the component of the dipole moment along the electric field. 
Consider now the case in which the impinging photon is energetic enough to 

dissociate the molecule. It is then necessary to expand lY(t)) in the bound and 
scattering eigenstates of the radiation-free Hamiltonian: 

H = H M  - d [E(t) + E"(t)], (10) 

IY(t))=xci(t)lEi)exp i dEcE,m,,(t)lE,m,q-)exp( -7). (11) 

Insertion of equation (1 1) into the time-dependent Schrodinger equation results in a set 
of first-order differential equations for the c,(t) coefficients, where v represents either the 
bound (i) or scattering (E ,  m, q)  indices. 

For weak fields the use of first-order perturbation theory gives, for the post-pulse 
preparation coefficient, 

where r is the pulse duration and 

&(O) = ___ exp(iwt)E(t)dt. (13) 
(2741'2 r - m  

where wE. E ,  = ( E  - E,)/h.  
The process described above amounts to the creation of a pure state (i.e. a state for 

which a phase may be defined) in the continuum by a well defined electric field. As long 
as there are no random collisions, this state will remain pure (i.e. will retain its phase), a 
feature of some importance to the discussion below. 

It follows from equations (9) and (12) that the probability P ( E , q )  of forming 
asymptotic product in arrangement q is 

(14) 
2n: 

QE, 4 )  = 1 ICE, m, q(t>> r)12 =% C IE(oE, EJ(EgIdIE, m, 4 - >I2  
m m 
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190 M. Shapiro and P. Brumer 

and that the branching ratio R(1,2;E) between the q = l  products and the q = 2  
products at energy E is given as 

1.3. Coherent radiative control of chemical reactions 
We now address the issue of how to alter the above yield ratio R(1,2;E) in a 

systematic fashion. Equation (15) makes clear that (at least in the weak-field regimen) 
this cannot be achieved by altering the laser intensity, since the field strength cancels 
out in the expression for R.  Any other quantity which appears in a similar form in both 
the numerator and the denominator cannot serve as a handle on yield control. 

Quantum interference phenomena can, however, alter the numerator or denomi- 
nator of R in an independent and controlled way. This can be achieved by accessing the 
final continuum state via two or more interfering pathways. One of the first examples 
which we studied [I] involves preparing a molecule in a superposition cl141> +c2Jq5,) 
state and exciting the two components to the same final continuum energy E by using 
two continuous-wave (CW) sources (figure 1). The field employed is of the form 

E(t)= c1 exp( -io,t + ixl) + c2 exp (- io2t + ix2), (16) 
where hoi = E - Ei. A straightforward computation [ 11 yields 

where El= E~ exp (ixi). Expanding the square gives 

R(1,2; E)= 

&nCIglC1<+1IdIE, m, 1 - > I 2  + Ig2~2(42IdIE, m, 1 ->I2 +2Re CclC2E"1G<4lIdIE, m, 1 ->I 
~rn[I~1c1<4~tdlE, m, 2->12+ lE2c2<421dlE, m, 2->12 +2 Re Cclc%lG<411dlE, m, 2-)1' 

(18) 

The structure of the numerator and denominator of equation (18) is of the type 
desired, that is each has a term associated with the excitation of the state, a term 
associated with the excitation of the state, and a term corresponding to the 
interference between the two excitation routes. The interference term, which can be 
either constructive or destructive, is in general different for the two product channels. 

E E 

Figure 1. A general two-step scheme for inducing controllable quantum interference effects into 
the continuum state at energy E.  The two bound states Cp, and Cp2 belong to a lower 
electronic state whereas the level at energy E is that of an excited electronic state. 
Coherence introduced in the first step is carried into the continuum (from [12]). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Laser control of photochemical reactions 191 
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Figure 2. Contour plot of the yield of I* (i.e. fraction of I* as product) in the photodissociation 
of CH31 from a superposition state comprised of (a) ( u , , J , ,  M,)=(O,O,O)+(u, ,J , ,  M,) 
=(O, 1,O) and (b) (O,O,O)+(O, 2,O). Here ui, J i  and M i  are the vibrational, rotational and 
rotational projection quantum numbers respectively of the ith bound state (from [l]). 

What makes equation (18) so important in practice is that the interference term has 
coefficients whose magnitude and sign depend upon experimentally controllable 
parameters. Thus the experimentalist can manipulate laboratory parameters and, in 
doing so, directly alter the reaction product yield by varying the magnitude of the 
interference term. In the case of equation ( 1  8) the experimental parameters which alter 
the yield [l] are contained in the complex quantity A=Z2c2/F",c1. Both x=lAl and 
8, -8, =arg(A) can be controlled separately in the experiment. 

Results of a specific computational example based upon equation (18) are shown in 
figure 2. Here we consider control over the relative probability of forming I (2P?i,) as 
against I denoted I and I* respectively, in the dissocation of methyl iodide: 

CH,I+CH, + I (19) 

+CH, +I*.  (20) 
The computations were carried out with realistic potential surfaces [39,40] within 

the framework of a fully quantum photodissociation theory [40,41]. Figure 2 shows a 
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192 M. Shapiro and P. Brumer 

typical plot of the yield of I* as a function of 8, -02  and S - x z / ( l  +x2) .  ( S = O  
corresponds to El =0, and S= 1 corresponds to E2 = O . )  We see that our ability to 
control the process (‘range of control’) is almost complete: as we change S and 8, - 02, 
the yield varies from 30 to 70% I. Higher and lower ratios can also be achieved [42] with 
different choices of the initial pair of states 16,) and 

These ideas can be naturally extended to the control of N products, using an initial 
superposition of N states [ 171. Experimentally, the creation of an initial superposition 
of two (or more) states may be achieved by acting on a single ground state with a light 
pulse whose frequency width spans the levels of interest [9-111. Alternatively, one can 
employ stimulated emission pumping through an intermediate electronic state [20]. 
The ‘real-time’ analogue of the above scenario with two CW frequencies, in which the 
superposition state preparation is affected by a single broad-band pulse and the 
dissociation by a second pulse, is discussed in detail in 52.2. 

2. Representative control scenarios 
As mentioned above, the two-step approach of figures 1 and 2 is simply one 

particular implementation of coherent control; numerous other scenarios may be 
designed. They all rely upon the same ‘coherent-control principle’ that, in order to 
achieve control, one must drive a state through multiple independent optical excitation 
routes to the samefinal state. 

It is helpful to think of coherent control as analogous to a double-slit (or multiple- 
slit) experiment; the tuning in of a desired product ratio R,  accomplished by varying the 
external laser parameters (e.g. A), is analogous to probing different regions of a screen 
on which the double-slit interference patterns are imaged. Control arises because these 
interference patterns are different for different final channels (because of the different 
molecular phases). 

It would seem that laser incoherence would lead to loss of control since incoherence 
implies that the phases of E“, and Z2 in equation (18) are random. An ensemble average of 
these phases is expected to lead to the disappearance of the interference term. This is 
only true, however, in the fully incoherent limit. Control can persist in the presence of 
some laser incoherence [I91 or when the initial state is described by a mixed, as distinct 
from pure, state [7]. Most surprising is the fact, described below, that, by utilizing 
strong laser fields, one can attain quantum interference control with completely 
incoherent sources [43]. 

We now describe in more detail two additional control scenarios. 

2.1. Interference between n-photon and m-photon routes (‘n +m’ control) 
So far, we exploited quantum interference phenomena by dissociating a superpo- 

sition of several energy eigenstates with. a single-type (one-photon absorption) process. 
It is possible instead to start with a single energy eigenstate and to employ interference 
between optical routes of diflerent types. Such is the interference between two 
multiphoton processes of different multiplicities. In order to satisfy the coherent- 
control principle, which requires that we reach the same final energy E,  we must use 
photons of commensurate frequencies, that is frequencies which satisfy an m o ,  = no2  
relation, with integer rn and n. Selection rules dictate the acceptable n, m pairs. 

As the simplest example, we examine a one-photon process interfering with a three- 
photon process (‘3 + 1’ control). Let H, and H e  be the nuclear Hamiltonians for the 
ground state and the excited electronic state respectively. H ,  is assumed to have a 
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Laser control of photochemical reactions 193 

Figure 3. A multiple-optical-route scheme to induce controllable quantum interference effects 
into the continuum state at energy E. Here the level 4g is a bound state ofa lower electronic 
state and that at E is a continuum state of the excited electronic state. Simultaneous 
application of frequencies o1 and w j  = 3w, leads to interference in the continuum state 
(from [12]). 

discrete spectrum and He to possess a continuous spectrum. The molecule, initially in 
an eigenstate IEi) of H,, is subjected to two electric fields (figure 3) given by 

E(t)=sl cos(olt+ k, * R+ Bl)+e3 COS(W,~+ k, * R+ OJ. (21) 
Here 03=301, E ~ = E ~ ~ $ ,  I= 1,3;cl is the magnitude and 2, is the polarization of the 
electric fields. The two fields are chosen parallel, with k, = 3k,. 

The probability P(E, q; Ei) of producing a product with energy E in arrangement q 
from a state IEi) is given by 

P(E,q ;  E i ) = P , ( E , q ; E i ) + P , , ( E , q ;  Ei)+P,(E,q; Ei), (22) 

wh'ere PI@, q; Ei) and P,(E, q; Ei) are the probabilities of dissociation due to the w1 and 
w, excitation, and P,3(E,q;Ei)  is the term due to interference between the two 
excitation routes. 

In the weak-field limit, P,(E, q; Ei) is given by 

where 

(~3.d),.p=(ell,.dlg), (25) 
with Is) and le) denoting the ground state and excited electronic state respectively. 
Pl(E, q; Ei) is given in third-order perturbation theory by [6 ]  

where 
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194 M. Shapiro and P. Brumer 

with 

We assumed that Ei+2hw, is below the dissociation threshold and that dissociation 
occurs from the excited electronic state only. 

T = ($1 . d ) ,  p(Ei - Hg + 2ho1)- '($1 . d ) ,  ,(Ei - H e  + hw 1)- '($1- d)e, g' (28) 

A similar derivation [6 ]  gives the cross-term in equation (22) as 

with the amplitude IF$& and phase Syi defined by 

The branching ratio Rqq, between the q and q' products can then be written as 

Next we rewrite equation (31) in a more convenient form. We define a dimensionless 
parameter Ei and a parameter x as follows: 

(32) 
E; 

E ~ = E ~ E ~  for I =  1,3, x=_.  

The quantity E,, essentially carries the unit for the electric fields; variations in the 
magnitude of E~ can also be used to account for unknown transition dipole moments. 
Utilizing these parameters, equation (3 1) becomes 

E3 

The numerator and denominator of equation (33) contain contributions from two 
independent routes and an interference term. Since the interference term is controllable 
through variation in laboratory parameters, so too is the product ratio R,,,. Thus the 
principle upon which this control scenario is based is the same as in the first example 
above, although the interference is introduced in an entirely different way. 

Experimental control over R,,. is obtained by varying the difference 8, - 38, and 
the parameter x. The former is the phase difference between the 0, and the w1 laser 
fields and the latter, via equation (32), incorporates the ratio of the two laser 
amplitudes. Experimentally one evisages using 'tripling' to produce w3 from 0,; the 
subsequent variation in the phase of one of these beams provides a straightforward 
method of altering 8, - 38,. Indeed, generating 0, from w1 allows for compensation of 
any phase jumps in the two laser sources. Thus the relative phase 0, - 3w is well 
defined. 

With the qualitative principle of interfering pathways established, it remains to 
determine the quantitative extent to which coherent control alters the yield ratio in a 
realistic system. To this end we consider an application to one-photon as against three- 
photon ('3 + 1') photodissociation of IBr. In particular, we focus on the energy regime 
where IBr dissociates to both I (zP3/2 + Br 2P3/2 and I (2P3/z +Br* 2P1,2. The IBr 
potential curves and coupling strengths used in the calculation, taken from the work of 
Child [44], are shown in figure 4. 
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Laser control of photochemical reactions 195 

u - 1  
0.4 0.6 0.8 

R (nm) 

Figure 4. IBr potential curves relevant in the one-plus-three-photon-induced dissociation 
(from [14]). 

A complete computation requires inclusion of angular momentum. A detailed 
discussion of the role of angular momentum is given in Q 3.  Here we simply display the 
results of the quantum calculation which fully incorporates all the rotational states 
involved in the ‘3 + 1’ coherent control of IBr. Two different cases were examined: those 
corresponding to fixed initial magnetic quantum numbers M i  and those corresponding 
to averaging over a random distribution of M i  for fixed Ji. Results typical of those 
obtained are shown in figures 5 and 6, where we provide a contour plot of the yield of 
Br* 2P,,, for the case of excitation from Ji = 1, M i  = 0, and J i  = 42with an average over 
Mi, as a function of laser control parameters (relative intensity and phase). The range of 
control in each case is vast with, remarkably, no loss of control with averaging over M j .  

As pointed out above, ‘3 + 1’ is not necessarily the only viable control scenario in the 
‘n + m’ family. It has the advantage that one may generate one of the frequencies (the 
tripled photon) from the other. This is indeed the reason why the ‘3 + 1’ route was the 
first control scenario to be implemented experimentally (see discussion below). 

As discussed in Q 3, control of integral (in contrast with diflerential) cross-sections 
requires that the IE, n, q - )  continuum states be made up of equal parity IJ, M )  angular 
momentum states. This means that, in the ‘m + n’ control scheme, the integer n must 
have the same parity as the integer m. Thus, studies of a ‘2 + 2’ scheme for the control of 
Na, photodissociation [ 18,451 (discussed in detail in Q 4) and of a ‘2 + 4‘ scenario for the 
control of the C1, photodissociation [46], have been published. In addition, studies of 
‘3  + 1’ control with strong fields have also appeared [47,48]. These studies and others 
[47] have verified that ‘n+m’ control is viable even when strong fields are used, 
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196 M. Shapiro and P. Brumer 

Figure 5. Contour plot of the yield of Br*('P,,') (percentage of Br* as product) in 
photodissociation of IBr from an initial bound state in X 'Ci with v = 0, Ji = 1 and M i  = 0. 
Results arise from simultaneous (w,, w3) excitation (w3 = 3w,), with w1 = 6657.5 cm- 
(from [14]). 

3E 

2E 

21 
6 

2 
rc) 
I 

14 

7 

3 

Figure 6. As in figure 5 but for 0 = 0, J i  = 42, w ,  = 6635.0 cm ~ and M averaged (E,, =i) (from 
~141). 
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Laser control of photochemical reactions 197 

although the dependence on the x amplitude and the 8, - 38, phase factors are no 
longer as transparent as in the weak-field case discussed above. 

The weak-field ‘3 + 1’ scenario has now been experimentally implemented in part in 
REMPI-type experiments. The experiments demonstrated control of the total 
ionization rate, first in Hg [31], and then in HCI and CO [32]. In the case of HCl[32], 
the molecule was excited to an intermediate 3X-(Q’) vibrational resonance, using a 
combination of three w1 (A, = 336 nm) photons and one w 3  (A, = 112 nm) photon. The 
w3 beam was generated from an w1 beam by tripling in a Kr gas cell. Ionization of the 
intermediate state takes place by absorption of one additional w1 photon. 

The relative phase of the light fields was varied by passing the w1 and w2 beams 
through a second Ar or H, (‘tuning’) gas cell of variable pressure. The HC1 REMPI 
experiments verified the prediction of a sinusoidal dependence of the ionization rates 
on the relative phase of the two exciting lasers of equation (33). The HCI experiment 
also verified the prediction of equation (33) of the dependence of the strength of the 
sinusoidal modulation of the ionization current on the x amplitude factor. 

As discussed in 9 3, if one is content with controlling angular distributions, one can 
lift the equal-parity restriction. The absorption of two photons of perpendicular 
polarizations [5, 81, or of two photons interfering with their second-harmonic photon 
(‘2 + 1’ scenario) [8, 35,361, results in states of different parities. Although such 
processes do not lead to control of integral quantities, they do allow for control of 
differential cross-sections. The ‘1 + 2’ scenario (discussed in Q 4) has been implemented 
experimentally for the control of photocurrent directionality in semiconductors, using 
no bias voltage [35]. 

2.2. The pump-dump scheme 
A useful extension of the scenario outlined in Q 1.3 is a ‘pumpdump’ scheme, in 

which an initial superposition of bound states is prepared with one laser pulse and 
subsequently dissociated with another. The scenario is shown qualitatively in figure 7. 
The pump and dump steps are assumed to be temporally separated by a time delay z. 

Figure 7. Coherent radiative control via a picosecond pulse scheme. In this case a single level is 
excited with a laser pulse to produce a superposition of two bound states in an excited 
electronic state. Subsequent de-excitation of this state to the continuum of the ground state 
allows control over the reaction on the ground state surface (from [12]). 
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198 M. Shapiro and P. Brumer 

The analysis below shows that under these circumstances the control parameters are 
the central frequency of the pump pulse and the time delay between the two pulses. 

Consider a molecule, initially (t = 0) in eigenstate IE,) of Hamiltonian H,, subjected 
to two transform limited light pulses. The field E(t) consists of two temporally separated 
pulses, that is E((t)= Ex(t) + i?d(t), with the Fourier transform of E,(t) denoted E,(o), etc. For 
convenience, we have chosen Gaussian pulses peaking at t = t, and td, respectively. As 
discussed in 5 1.2, the E,(t) pulse induces a transition to a linear combination of two 
excited bound electronic states with nuclear eigenfunctions / E l )  and lE2), and the &(t) 
pulse dissociates the molecule by further exciting it to the continuous part of the 
spectrum. Both fields are chosen to be sufficiently weak for perturbation theory to be 
valid. Contrary to popular expectation, perturbation theory does not imply a small 
total photodissociation yield. Computational results [ S O ]  indicate that perturbation 
theory is quantitatively correct for dissociation probabilities as large as 0.2. 

The superposition state prepared by the Ex(t) pulse, whose width is chosen to 
encompass just the two E l  and E ,  levels, is given in first-order perturbation theory as 

where 

with O k g  (Ek - E,)/h. 
After a delay time of z = t d  - t, the system is subjected to the t?d(t) pulse. It follows 

from equation (34) that after this delay time each preparation coefficient has picked up 
an extra factor of exp ( -  iEkz/h), k = 1,2. Hence, the phase of c1 relative to c2 at that time 
increases by -(El - E,)z/h =02, lz. Thus the natural two-state time evolution replaces 
the relative laser phase of the two-frequency control scenario of 0 1.3. 

After the decay of the &(t) pulse the system wavefunction is given as 

The probability of observing the q fragments at total energy E in the remote future is 
therefore given as 
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-10 

Integrating over E to encompass the full width of the second pulse and forming the 
ratio Y= P(q)/X.,P(q) give the ratio of products in each of the two arrangement channels, 
that is the quantity that we wish to control. Once again it is the sum of two direct 
photodissociation contributions, plus an interference term. 

Examination of equation (38) makes clear that the product ratio Ycan be varied by 
changing the delay time z = t ,  - t ,  or ratio x = ~ c l / c 2 ~ ;  the latter is not conveniently done 
by detuning the initial excitation pulse. 

It is enlightening to consider this scenario as applied [9] to a model branching 
photodissociation reaction with masses of D and H, that is 

H +  H D t D H , + D +  H,, (40) 
in which one uses the first pulse to excite a pair of states in a binding (Rydberg) 
electronic state and the second pulse to dissociate the system by de-exciting it back to 
the ground state. Typical results (see also [9]) for control are shown in figure 8 where 
the yield is seen to vary from 16 to 72% as the time delay and tuning of the initial 
excitation pulse are varied. This is an extreme range of control, especially in light of the 
fact that the two product channels differ only in mass factors. 

It is highly instructive to examine the nature of the superposition state prepared in 
the initial excitation (equation 34) and its time evolution during the delay between 
pulses. An example of such a state is shown in figure 9 where we plot the wavefunction 
for a collinear model of the reaction of equation (40). Specifically, the coordinates are 
the reaction coordinate S and its orthogonal conjugate x. The wavefunction is shown 
evolving over half of its total possible period. Examination of figure 9 shows that de- 
exciting this superposition state (figure 9 b) would yield a substantially different 

I I b.4 , 

Figure 8. Contour plot of the DH yield in the reaction D+H,+DH+H. The control 
parameters are the difference in energy between the excitation pulse centre energy E x  and 
the average energy E,, ofthe two excited levels and the time T between the pulses. Although 
the abscissa begins at zero and spans approximately one period, the results are periodic in 
the delay time (from 191). 
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200 M. Shpiro and P. Brumer 

Figure 9. Time evolution of the square of the wavefunction for a superposition state comprised 
of levels 56 and 57 of the G1 surface of H,. The probability is shown as a function of the 
reaction coordinate S and orthogonal distance x at times of (u) 0, (h)  0.0825 ps, (c) 0.1 65 ps, 
( d )  0.33 ps, (e) 0.495 ps and cf) 0-66 ps, which correspond to equal fractions of one half of the 
period 2x/w,, (from [9]). 

product yield from de-exciting at the time in figure 9 (e). However, thcrc is clcarly no 
particular preference of the wavefunction for large positive or large negative S at these 
particular times, which would be the case if the reaction control were a result of some 
spatial characteristics of thc wavcfunction. Rather, the essential control charactcristics 
of the wavefunction are carried in the quantum amplitudc and phase of the created 
superposition state. 

A sccond example of pump dump control [l 11 is provided by the example of 1Br 
photodissociation. Specifically, we showed that it is possible to control the Br* against 
Br yicld in this process, using two conveniently chosen picosecond pulses. The first 
pulsc was choscn to prcparc a linear superposition oftwo bound statcs which arise from 
mixing of the X and A states. A subsequent pulse pumps this superposition to 
dissociation where the relative yields of Br and Br* are examincd. Results typical of 
those obtained are shown in figure 10 where the relative yicld is shown as a function of 
the delay between pulses and the detuning of the pump pulse from the energetic centre 
of the two bound statcs in the initial superposition. Thc rcsults show the vast range of 
control which is possible with this relatively simple experimental sct-up. Once again it 
is worth noting that both the potential energy surfaces and the quantum photodissoci- 
ation computations are ‘state of thc art’, so that thc results should bc rcprcscntative of 
results expected in the laboratory. 

Theoretical work on similar pumpdump sccnarios for the control of the 

D+OH+HOD-+H+OD 

dissociation via the B state [Sl] of HOD and the A state [52] of HOD have recently 
been publishcd. Experimental work on the control of this system is now in progress 
CW. 

3. Selection rules 
We now discuss in greater detail issues of selection rules in coherent control. We 

show that there are some strict limitations on the types of scenario which can be used to 
control integral properties. Thc tcrm ‘integral’ (as distinct from ‘differcntial’) is used 
here to describe any quantity in which averaging over angles and/or final polarizations 
takes place in the detection process. The most obvious of such integral quantities is the 
total yield of a reaction. 
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Figure 10. Computed control over the Br yield as a function of E x  (the excitation pulse 
detuning) and z (the time delay between the pulses) (from [ 1 13). Br yield Ad = 20 cm - Ax 
= 2 cm- ', E,  = 15 230 cm- '. 

Most of the limitations imposed on the control of integral quantities do not apply to 
the control of differential attributes. Examples of differential quantities of interest 
include the control of current directionality [S] (see §6) ,  and of the angular 
distributions of photofragments [ S ] .  

The discussion below can be summarized in terms of two general selection rules for 
integral control. 

The (two) interfering pathways must be able to access continuum states with the 
same magnetic quantum numbers. This rule holds even when the initial states are 
M polarized. 
If the initial state is not M polarized, integral control can only be achieved via 
interference between continuum states of equal parity. Two pathways which 
generate states of opposite parity, such as one-photon and two-photon 
absorption, cannot lead to integral control of unpolarized initial states. 
However, these pathways can [S, 81 and do [35,36] lead to differential control 
of unpolarized states or integral control of polarized beams (subject to selection 
rule (a)).  

In order to see how these selection rules come about we use a symmetric-top 
molecule as a working example and the superposition-state control scenario outlined 
in 9 1.3. To be more specific, we consider CH,I. This symmetric-top molecule is in many 
ways equivalent to a linear triatomic molecule [39], since in both the ground and the 
first few excited states the I, and C and the H, (CM) do not deviate significantly from 
the collinear configuration. 

and CH,(v)+I zP3,2. The relevant 
quantum numbers for the bound states 14J, 14j) which make up the initial 
superposition state are the energy Ei and the total angular momentum and its z 
projection, J i  and M i  respectively; hence we denote the states as ( E i , J i ,  M i ) ,  etc. The 
products' label rn is composed of the final CH, (umbrella) vibrational state v, the CH, 

CH31 dissociates to yield CH,(v)+ I' 
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202 M. Shapiro and P.  Brumer 

scattering angles relative to the polarization direction of the photolysis laser k( = q5k, Ok), 
and the products' electronic state index q = 1 or q = 2. 

The molecule is a symmetric top rather than a simple rotator owing to the presence 
of I ,  the projection of the total angular momentum on the CH,-I axis. In general, I is a 
projection of both the electronic angular momentum and the rotation of the CH, group 
about the C-I axis. In the present discussion we ignore the nuclear component of 1 and 
concentrate on the electronic component. 

In the photoexcitation to the first (A) continuum of CH,I, A assumes the values 0 
(the ground and the ,Qo states) and k 1 (the 'Q1 state). In the diabatic representation 
[40], L = O  correlates with q = 1, the CH, + I* 'PI,, fragment channels and I =  rt 1 with 
4 = 2, the CH, + I 'P,,, channel. We therefore use I and q interchangeably in describing 
the products' electronic states. 

For a symmetric-top molecule the three-dimensional photodissociation amplitude 
can be written as [40] 

(41) 
Here p is the reduced-mass of the CH,-I pair, k,, is the magnitude of the CH,(v) to I(I)  
relative wave-vector, and t(E, J ,  I ,  ulE, Ji) are the (Mi-independent) reduced ampli- 
tudes, containing the essential dynamics of the photodissociation process [40]. 

With the use of equation (41), the integral attributes which enter the general 
coherent control expression (equation (1 8)) are 

(2J + 1)1'2Di,Mc(4k7 ek ,  - 4 k ) t ( E 7  J, I ,  ulEi? Ji). 

-- 8~ - p k o , (  J 1 J i ) (  J 1 J j )  
- h2 ~ M ~ , M ~  

V ,  J -Mi 0 Mi -Mj 0 Mj 

x t(E, J ,  I ,  VIE, J,)t*(E, J ,  A, VIEj, J j ) .  (42) 

The 6 M z , M J  factor arises from the angular integration and the orthogonality of the 
Wigner D functions [54]. We see immediately that, even for the i # j  interference term, 
M i  = M j  is required for non-zero d(". Since coherent control vanishes if the interference 
term vanishes, we conclude that, for the superposition-state scenario, control with 
linearly polarized light is possible only when the states which make up the 
superposition state have equal magnetic quantum numbers. 

This requirement is actually because the two excitation pathways must be able to 
access continuum states with the same M quantum number. In the case of linear 
polarization the photoexcitation process cannot change M; hence we have the 
requirement that M i  = M j  in the initial superposition estate. For circular polarization, 
M changes by & 1 and the appropriate selection rule is that Mi=Mjf 1. These two 
opposed selection rules immediately preclude the use of a single bound state with two 
diferent polarizations (linear + circular or two circular polarizations of opposite sense) 
for integral control. However, there are no limitations on differential control [ 5 ]  since 
two states of different quantum numbers M can interfere under these circumstances. 

We now proceed to explore two cases of interest; the first, where the initial state is M 
selected, and the second where no such selection is assumed. These cases are treated 
below. 
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3.1. M-polarized initial states 
We consider exciting a superposition of two bound states: [El, J, ,  M,) and 

IE,, J,, M ,  = M , )  with linearly polarized light. The choice M, = M is consistent with 
the above discussion for linearly polarized light. The excitation by radiation with two 
colours raises the system to energy E as described above in 9 1.3. Equation (18), in 
conjunction with equation (42), is not directly applicable. 

The symmetry properties of the 3-j symbols [54] imply that 

d‘”(Ei,J, Mi;Ej ,Jj ,Mj;  E ) = ( -  l)(ii+J’)d(”(Ej,Jj, -Mi;Ej ,  Jj, -Mj;E) .  (43) 
Therefore the relative product yields R(1,2;E) are identical for the case of lMll and 
- ] M I  I if J ,  + J ,  is even. In the case of odd J ,  + J,, the interference term changes sign 
when going from lMll to - IM,I. The control maps (i.e. yield against S and 8, -8J of 
the M-polarized case are identical for the IM, I and - lMll case, except for a shift in the 
relative phase 8, - 8, of R. For the unpolarized case, this result is shown below to lead to 
cancellation of the interference term for states of different parities. 

Figures 11 (a) and 12 (a) display the yield of I* ,Plj2 for two different M-selected 
initial bound-state superpositions. Results are shown at ol = 39 638 cm-’, which is 
near the absorption maximum. For our present discussion, the main feature worth 
noting is that the equal-parity case in figure 12(a), where J ,  = J,=2, is strikingly 
different from the unequal-parity case in figure 11 (a), where J, = 1 and J, =2. The 
equal-parity maps show a wider range of control compared with the unequal-parity 
results. 

In addition to the above, the actual value assumed by M of the initial beam is of 
importance. This is most noticeable in the unequal-parity case, where the M = 1 case in 
figure 11 (a) is drastically different from the M = 0 case in figure 13 which shows no 
phase control. This loss of control follows from the properties of the 3-j symbols of 
equation (42) which are zero whenever M, = O  and J, + J, is odd [54]. 

3.2. M-averaged initial states 
In this case the initial state is defined by the density matrix 

1 
P o = -  1 C1IE19J1, M l X E , ,  J l ,M,I  +C,IJ%, J , , M , ) < E , , J , ,  MlI. (44) 

J , + ~ M ~  

Each of the superposition states which make up our initial density matrix may be 
treated independently in the subsequent two-colour irradiation which lifts the system 
to E .  The resultant probability P(q, E )  of observing product channel q at energy E is 
obtained as an average over the 25, + 1 superpositions: 

where F j , j - ~ i ~ ~ $ ~ .  From equation (42) it follows that the M ,  dependence of 
d@)(E,,J, M,; Ej ,J j ,  MI; E )  is entirely contained in the 3-j product 

( J 1 ,Ti))( J 1 J j )  
-MI 0 MI -MI 0 MI * 

Hence, the M ,  summation can be performed separately. Defining 
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S 

I8( 

8 
CD" I 9c 

C 

< 0.35 

I I I I 1 

S 
0.50 I 3 

Figure 1 1 .  Contour plot of the yield of I*(zP,,2) (i.e. percentage of I* as product) in the 
photodissociation of CH,I from a polarized superposition state composed of u1 =0, J ,  = 1 
andv,=O, J 2 = 2 ,  whereM,=M,=l,at(a)w,,=39638cm-' and(b)wE,=42367cm-'. 
u=O denotes the ground vibrational state of CHJ. The abscissa is labelled by S=xz/(l 
+ x2) ,  where x is the ratio of laser field intensities and the ordinate by the relative phase 
parameter 19 = 0, - O2 (after [3]). 
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S 

Figure 12. As in figure 1 1  but u1 =O,J, = 2 ,  u2 = 1, J ,  = 2 ,  M ,  = M ,  =0, at (a)w,, =39 638 cm-' 
and (b) wE,=42367cm-'. v =  1 denotes the first vibrationally excited state of CHJ 
(essentially the first excitation of the C-I stretch (after [3]). 
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01 I I I I 
0 0.50 
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1.70 

I 
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S 

Figure 13. Asinfigure 1 1  butu,=O,J,=l,u,=O, J,=2, M,=M,=O(nophasecontrolisseen 
since J , + J ,  is odd and M,=O):  (a) oE,=39638cm-';  (b)  oE,=42367cm-'  (after [3]). 
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we have that 

where 
Ji; E,, J,; E ) -  1 Ci , , (J ) t (E ,J ,  A, u(Ei, Ji)t*(E, J ,  I ,  v ( E j , J j ) .  (49) 

J ,  u 

It follows immediately from the symmetry properties of the 3-j symbols [54] and 
equations (47) that tQ)(E,,  J , ;  E,, Jz; E )  is zero if J ,  +J2 is odd, that is yield control in 

J 

Figure 14. I*(2P,,,) yield in the photodissociation of CHJ starting from an M-averaged 
(unpolarized) ensemble of superposition states, where the J and u are as in figure 12: 
(a) wE,=39639cm-'; and (b) wE,=42367cm-' (after [3]). 
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208 M. Shapiro and P. Brumer 

M-averaged situations requires J ,  and J ,  of equal parity. Another way of reaching the 
same conclusion is to note, as discussed above, that for odd J ,  + J, ,  when we perform 
the M, summation, the positive M, terms cancel out the negative M ,  terms and the 
M ,  =O term is identically zero. We conclude that, for unpolarized initial states, only 
two states of equal parity can be made to interfere such that control of integral 
quantities arises. 

The expression for the yield R(1 ,2 ;E)  now follows directly as the ratio of 
P(l ,E) /P(2 ,E)  in equation (48). Figure 14 shows the result for coherent radiative 
control of an initial M-averaged pair of states of equal parity at two different values of 
0,. The range of control demonstrated is very wide; at the peak of the absorption (figure 
14(a), the I*(2P1,2) quantum yield changes from 30%, for S=O.9 and 8, -8,=o”, to 
75% for S = 0 2  and 8, -8, = 140”. A comparison with the even J ,  + J ,  polarized case 
(figure 12) shows that the range of control degrades only slightly with M averaging. 
This is to be contrasted (figure 11 compared with 13) with the odd J ,  + J ,  case. 

4. ‘2+2’ control of a thermal ensemble 
In practice there are a number of sources of incoherence which tend to diminish 

control. Prominent amongst these are effects due to an initial thermal distribution of 
states and effects due to partial coherence of the laser source. Below we describe one 
approach, based upon a resonant ‘2 +2’ scenario, which deals effectively with both 
problems. An alternative method in which coherence is retained in the presence of 
collisions has been discussed elsewhere [7]. 

The specific scheme that we advocate is depicted, for the particular case of Na, 
photodissociation, in figure 15. Here the molecule is lifted from an initial bound state 
IE, J i ,  M i )  to energy E via two independent two-photon routes. To introduce notation, 
first consider a single such two-photon route. Absorption of the first photon of 
frequency o1 lifts the system to a region close to an intermediate bound state 
JE,J,M,), and a second photon of frequency w, carries the system to the dissociating 
states IE, k, q - ) ,  where the scattering angles are specified by k = (& 4 k ) .  Here the J 
values are the angular momentum, the M values are their projection along the z axis, 
and the values of energy Ei and Em include specification of the vibrational quantum 
numbers. Specifically, if we denote the phases of the coherent states by 4,  and 4,, the 
wave-vectors by k, and k, with overall phases Oi= ki. R+c$~ (i= 1,2) and the electric 
field amplitudes by E ,  and E,, then the probability amplitude for resonant two-photon 
(0, +a,) photodissociation is given [18,45]  by 

&,i(E, E i J i M i , w ~ , u l )  

h J , ~ , ~ ~ O E , , , , J ,  - M i  0 Mi -Mi  0 M i  - - c c ( J 1 J m ) (  J m  
(2~kq)’” 

x ( 2 5  + l)”’D2,~,(Ok, $ k , O ) t ( E ,  EjJi, 0 2 ,  W1, qIJPA EmJm) exp [’(el + OdI. (50) 

Here di is the component of the dipole moment along the electric field vector of the ith 
laser mode, E = Ei +(m, + wJ, 6, and Tm are the radiative shift and width respectively 
of the intermediate state, ,u is the reduced mass, and k, is the relative momentum of the 
dissociated product in the q channel. The D:fMi is the parity-adopted rotation matrix 
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Figure 15. Two resonant two-photon paths in the photodissociation of Na, (from [ 181). 

[55 ]  with 1 the magnitude of the projection on the internuclear axis of the electronic 
angular momentum and (- l)Jp the parity of the rotation matrix. We have set h = 1, and 
assumed for simplicity lasers which are linearly polarized, with parallel electric field 
vectors. Note that the T-matrix element in equation (50) is a complex quantity, whose 
phase is the sum of the laser phase 8, + O2 and the molecular phase, that is the phase oft. 

The probability of producing the fragments in the q channel is obtained by 
integrating the square of equation (50) over the scattering angles k, with the result 

Pcq)(E, EiJ iMi ,02 ,  mi)= dk lTkq,i(E, EiJiMi,w2, wJ’ s 
x t(E, EiJi7 01941 J P ~  E,Jm)I2.  (51) 

Because the t-matrix element contains a factor of [w ,  -(Em+dm-Ei)+ir,, ,]-l  the 
probability is greatly enhanced by the approximate inverse square of the detuning 
A = 0, -(Em + 6 ,  - Ei)  as long as the line width r, < A .  Hence only the levels closest to 
the resonance A = 0 contribute significantly to the dissociation probability. This allows 
us to photodissociate molecules selectively from a thermal bath, reestablishing 
coherence necessary for quantum interference based control and overcoming dephas- 
ing effects due to collisions. 
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Consider then the following coherent control scenario. A molecule is irradiated 
with three interrelated frequencies o,, o+ and 0- where photodissociation occurs at 
E = E i + 2 0 0  = E i + ( w +  + w - )  and where w, and o+ are chosen to be resonant with 
intermediate bound-state levels. The probability of photodissociation at energy E into 
arrangement channel q is then given by the square of the sum of the T-matrix elements 
from pathway a (0, +oo) and pathway b (o+ +o-). That is, the probability into 
channel q 

c 

Here P(,)(a) and P(@(b) are the independent photodissociation probabilities associated 
with routes a and b, respectively, and P(@(ab) is the interference term between them, 
discussed below. Note that the two T-matrix elements in equation (52) are associated 
with different lasers and as such contain different laser phases. Specifically, the overall 
phase of the three laser fields are 8 0 = k o ~ R + ~ o , 8 + = k + ~ R + ~ +  and O-=k-.R 
+ 4- ,  where 4,, 4+ and 4- are the photon phases, and k,, k+  and k- are the wave- 
vectors of the laser modes wo, o+ and o-, whose electric field strengths are E,, E ,  and 
E -  and intensities I,, I +  and I - .  

The optical path-path interference term P‘¶)(ab) is given by 

P‘@(ub) = 2[F‘4’(ab)l cos (a: - a;), 

a:: - ag = (8: - sg) +(2e, - e, - e-), 

(53) 

(54) 

with the relative phase 

where the amplitude IF(4)(ab)l and the molecular phase difference 8:: - Sg are defined by 

IP(ab)l  exp [i(@ - Sg)] 

=% c c ,c. ( J 
1 J m ) (  J m  1 J i ) (  J 

J , ~ , A > o E , , J , E ~ , J ~  -Mi  0 Mi - M i  0 Mi - M i  0 Mi 

Consider now the quantity Rqqj of interest, which is the branching ratio of the product 
in the q channel to that in the q’ channel. Noting that in the weak-field case P(4)(a) is 
proportional to E:, P(@(b) to E:E?, and P(4)(ab) to E;E+E-, we can write 

where p g  = P(¶)‘(a)/e:, p#= P ( q ) ( b ) / ~ $ ~ ?  and Ip2I = I F ( 4 ) ( a b ) l / ~ i ~ + ~ -  and x = &+&- le i  
= ( I  + I  -)1’2/lo. The terms with B(¶) and B(¶’), described below correspond to resonant 
photodissociation routes to energies other than E = Ei + 2ho,  and hence [4] to terms 
which do not coherently interfere with the pathways a and b. Minimization of these 
terms, due to absorption of oo + o-, oo +a+, w + + oo or o + + o +, has been discussed 
elsewhere [18,45]. Here we just emphasize that the product ratio in equation (56) 
depends upon both the laser intensities and the relative laser phase. Hence manipulat- 
ing these laboratory parameters allows for control over the relative cross-section 
between channels. 
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Laser control of photochemical reactions 21 1 

The proposed scenario, embodied in equation (56), also provides a means by which 
control can be improved by eliminating effects due to laser jitter. Specifically, the term 
2 4 ~ ~ - 4 +  -4- contained in the relative phase .:-at can be subject to the phase 
fluctuations arising from laser instabilities. If such fluctuations are sufficiently large, 
then the interference term in equation (56), and hence control, disappears [19]. The 
following experimentally desirable implementation of the above two-photon-plus-two- 
photon scenario readily compensates for this problem. Specifically, consider generat- 
ing w + = wo + 6 and w1 = wo - 6 in a parametric process by passing a beam of frequency 
20, through a nonlinear crystal. This latter beam is assumed to be generated by 
second-harmonic generation from the laser wo with the phase 40. Then the quantity 
240 - 4 + - 4 - in the phase difference between the wo + w,, and w+ + w- routes is a 
constant. That is, in this particular scenario, fluctuations in 4, cancel and have no effect 
on the relative phase a:- a;. Thus the two-photon-plus-two-photon scenario is 
insensitive to the laser jitter of the incident laser fields. 

To examine the range of control afforded by this scheme consider the photo- 
dissociation of Na, in the regimen below the Na (3d) threshold where dissociation is to 
two product channels Na (3s) + Na (3p) and Na (3s) + Na (4s). Two-photon dissociation 
of Na, from a bound state of the 'Z: state occurs [18,45] in this region by initial 
excitation to an excited intermediate bound state IE,J,M,). The latter is a 
superposition of states of the AIZ: and b3n, electronic curves, a consequence of spin- 
orbit coupling. That is, the two-photon photodissociation can be viewed [45] as 
occurring via intersystem crossing subsequent to absorption of the first photon. The 
continuum states reached in the excitation can be either of singlet or triplet character 
but, despite the multitude of electronic states involved in the computation, the 
predominant contributions to the products Na (3p) and Na (4s) are found to come from 
the 3r17, and 3ZC: states, respectively. Methods for computing the required photodissoc- 
ation amplitude, which involves eleven electronic states have been discussed elsewhere 
[45]. Since the resonant character of the two-photon excitation allows us to select a 
single initial state from a thermal ensemble, we consider here the specific case of v i  = J i  
= 0 without loss of generality, where ui and Ji denote the vibrational and the rotational 
quantum numbers respectively of the initial state. 

The ratio Rqq, depends on a number of laboratory control parameters including the 
relative laser intensities x, the relative laser phase and the ratio of E ,  to E -  via q. In 
addition, the relative cross-sections can be altered by modifying the detuning. Typical 
control results are shown in figure 16 which provides contour plots of the Na (3p) yield 
(i.e. the ratio of the probability of observing Na (3p) to the sum of the probabilities to 
form Na (3p) plus Na (4s)). The figure axes are the ratio x of the laser amplitudes and the 
relative laser phase 60=280-O+ -8- .  Here wo=631.899nm, w, =562+333nm and 
w -  = 720.284 nm and control is seen to be large, ranging from 30 to 90% Na (3p) as 68 
and x are varied. 

Note that the proposed approach is not limited to the specific frequency scheme 
discussed above. Essentially all that is required is that the two resonant photodissoci- 
ation routes lead to interference and that the cumulative laser phases of the two routes 
be independent of laser jitter. As one sample extension, consider the case where paths a 
and b are composed of totally different photons, w($ and w? and w(!) and OF), with 
w'$ + w!?= w(!) + w'?. Both these sets of frequencies can be generated, for example, by 
passing 20, light through nonlinear crystals, hence yielding two pathways whose 
relative phase is independent of laser jitter in the initial 20.1, source. Given these four 
frequencies, we now have an additional degree of freedom in order to optimize control, 
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L 

-------320- 
Y -. JC*l 

S U 

Figure 16. Contours of equal Na(3p) yield. The ordinate is the relative laser phase and the 
abscissa is S = x'(1 + x') where x is the field intensity ratio. Here w,, = 627584 nm, 
w +  = 61 1.207 nm, w -  =644.863 nm and r]  = 0 5  See [lS] for a discussion of q which can be 
used to minimize background contributions (from C4.51). 

although the experiment is considerably more complicated than in the three-frequency 
case. Typical results for Na, have been provided elsewhere [18,45]. Note also that the 
control is not limited to two-product channels, such as those discussed above. Recent 
computations [45] on higher-energy Na, photodissociation, where more product 
arrangement channels are available, show equally large ranges of control for the three- 
channel case. 

5. Control of symmetry breaking 
Weak-field phase interference has one remarkable property; it can lead to 

controlled symmetry breaking [ 151. Below we show that the pumpdump scheme 
described above 0 2.2) can lead to symmetry breaking in systems with three- 
dimensional spherical symmetry and to the generation of chirality, provided that 
magnetic quantum state selection is performed. Other mechanisms for collinear 
symmetry breaking in strong fields have recently been proposed [56,57]. There, it was 
shown that one can generate even high harmonics by exciting a symmetric double 
quantum well. However, in contrast with the symmetry-breaking scenario described 
below, the generation of even harmonics is not expected to exist in systems with three- 
dimensional spherical symmetry. 

In general, symmetry breaking occurs whenever a system executes a transition to a 
asymmetric eigenstate of the Hamiltonian. Strictly speaking, asymmetric eigenstates 
(i.e. states which do not belong to any of the symmetry group representations) can occur 
if several degenerate eigenstates exist, each belonging to a different irreducible 
representation. Any linear combination of such eigenstates is asymmetric. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
2
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Laser control of photochemical reactions 213 

In practice, symmetry breaking also occurs even if the degeneracy is only 
approximate, as in the problem of a symmetric double-well potential. If the barrier 
between the two wells is such that tunnelling is very small, then the ground state of the 
system is composed, to all intents and purposes, of a doublet of (symmetric and 
antisymmetric) degenerate states. States localized at either well can then result by 
taking the f linear combinations of this doublet. Because of the near degeneracy, these 
asymmetric localized states are essentially eigenstates of the Hamiltonian insofar as 
their time evolution can be immeasurably slow. 

Asymmetric eigenstates of a symmetric Hamiltonian also occur in the continuous 
spectrum of a BAB-type molecule. It is clear that the IE, n, R - )  state, which correlates 
asymptotically with the dissociation of the right B group, must be degenerate with the 
IE, n, L-) state, giving rise to the departure of the left B group. It is also possible to form 
symmetric IE, n, s-) and antisymmetric IE, n, a - )  eigenstates of the same Hamiltonian 
by taking the rf: combination of these states. There is an important physical distinction 
between the asymmetric states and states which are symmetric-antisymmetric: Any 
experiment performed in the asymptotic B - - AB or BA- - B regions must, by 
necessity, measure the probability of populating an asymmetric state. This follows 
because, when the B - - AB distance or the BA - - B distance is large, a given group B 
is either far away from or close to group A. Thus symmetric and antisymmetric states 
are not directly observable in the asymptotic regime. 

We conclude that the very act of observation of the dissociated molecule entails the 
collapse of the system to one of the asymmetric states. As long as the probability of 
collapse to the ( E ,  n, R - )  state is equal to the probability of collapse to the ( E ,  n, L - )  
state, the collapse to an asymmetric state does not lead to a preference of R over L in an 
ensemble of molecules. This is the case when the above collapse (‘symmetry breaking’) is 
spontaneous, that is occurring owing to some (random) factors not in our control. CC 
techniques allow us to influence these probabilities. In this case, symmetry breaking is 
stimulated rather than spontaneous. This has a far-reaching physical and practical 
significance. 

One of the most important cases of symmetry breaking arises when the two B 
groups (now denoted as B and B )  are not identical, but are enantiomers of one another. 
(Two groups of atoms are said to be enantiomers of one another if one is the mirror 
image of the other. If these groups are also ‘chiral’, i.e. they lack a centre of inversion 
symmetry, then the two enantiomers are distinguishable and can be detected through 
the distinctive direction of rotation of linearly polarized light.) 

The existence and role of enantiomers is recognized as one of the fundamental 
broken symmetries in nature [SS]. It has motivated a long-standing interest in 
asymmetric synthesis, that is a process which preferentially produces a specific chiral 
species. Contrary to the prevailing belief (for a discussion see [59 ] ;  for historical 
examples see [60]) that asymmetric synthesis must necessarily involve either chiral 
reactants, or chiral external system conditions such as chiral crystalline surfaces, we 
show below that preferential production of a chiral photofragment can occur even 
though the parent molecule is not chiral. In particular two results are demonstrated. 

(1) Ordinary photodissociation, using linearly polarized light, of a BAB ‘pro- 
chiral’ molecule may yield different cross-sections for the production of right- 
handed (B) and left-handed (B’) products, when the direction of the angular 
momentum mi of the products is selected. 

(2) This natural symmetry breaking may be enhanced and controlled using 
coherent lasers. 
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214 M. Shapiro and P. Brumer 

To treat this problem we return to the formulation of the pumpdump scenario 
described above, with attention focused on control of the relative yield of two product 
arrangement channels, but with angular momentum projection mj fixed. That is 

I 

/ 4  

Explicitly considering the dissociation of B A B  into right-handed products R and 
left-handed products L we have 

As above, the product ratio Y is a function of the delay time z = t ,  - t ,  and the ratio 
x=  lcl/c2/, the latter by detuning the initial excitation pulse. Active control over the 
products B + A B  against B + A B ,  that is a variation in Y with T and x, and hence 
control over left-handed against right-handed products, will result only if P(R, mi) and 
P(L, mj) have different functional dependences on x and z. 

We now show that P(R, mi) may be different from P(L, mj) for the BAB case. We first 
note that this molecule belongs to the C, point group which is a group possessing only 
one symmetry plane. This plane, denoted as G, is defined as the collection of the CZv 
points, that is points satisfying the B - - A  = A - - B condition, where B - - A  
designates the distance between the B and A groups. We choose the intermediate state 
] E l )  to be symmetric and the state IE2) to be antisymmetric with respect to reflection in 
the plane. Furthermore, we shall focus upon transitions between electronic states of 
the same representations, for example A’ to A’ or A” to A” (where A’ denotes the 
symmetric representation and A” the antisymmetric representation the C, group). We 
further assume that the ground vibronic state belongs to the A‘ representation. 

The first thing to demonstrate is that it is possible to excite simultaneously, by 
optical means, both the symmetric ( E l )  and antisymmetric IE,) states. Using equation 
(35) we see that this requires the existence of both a symmetric d component, denoted as 
d,, and an antisymmetric d component, denoted d,, because, by symmetry properties of 
I & >  and I&>, 

The existence of both dipole moment components occurs in A’4A‘  electronic 
transitions whenever a bent B‘- -A - -B molecule deviates considerably from the 
equidistant Czv geometries (where d, = 0). The effect is non-Franck-Condon in nature, 
because we no longer assume that the dipole moment does not vary with the nuclear 
configurations. (In the theory of vibronic transitions terminology this existence of both 
d, and d,, is due to a Herzberg-Teller intensity borrowing [61] mechanism.) 

We conclude that the excitation pulse can create a IE,) ,  JE2) superposition 
consisting of two states of different reflection symmetry, which is therefore asymmetric. 
We now wish to show that this asymmetry established by exciting non-degenerate 
bound states translates to an asymmetry in the probability of populating the two 
degenerate IE, n, R - ) ,  IE,n, L - )  continuum states. We proceed by examining the 
properties of the bound-free transition matrix elements of equation (39) entering the 
probability expression of equation (38). 
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Laser control of photochemical reactions 215 

Although the continuum states ( E ,  n, q - )  of interest are asymmetric, they satisfy a 
closure relation, since olE, n, R - )  = ( E ,  n, L - )  and vice versa. Working with the 
symmetric and antisymmetric continuum eigenfunctions 

using the fact that (El)  is symmetric and IE,) antisymmetric, and adopting the 
notation A,, = ( E ,  n,s-ld,lE,), S,, = ( E ,  n, a-ld,lE,), etc., we have 

d(4) 1 1 - -C' CIS,, I 2  + IAal I _+2 Re(AatS:lII' 

dyl = ~ [ I A s 2 1 2  + ISa2I2 ? 2 Re (As2S3I, 

d(f$ =C'(S,,A& + Aa1Sz2 f S,iS,*, f Aa,A,*,), 

(62) 

(63) 

(64) 
where the plus sign applies for q = R and the minus sign for q = L. Here the sum is over 
all quantum numbers other than mf 

Equation (64) displays two noteworthy features. 

(1) dif)#d&', k =  1,2. That is, the system displays natural symmetry breaking in 
photodissociation from state IE,) or state I&), with right- and left-handed 
product probabilities differing by 4C' Re (Sz1Aal) for excitation from IE , )  and 
4Y Re(A,,S,*,) for excitation from IE,). Note that these symmetry-breaking 
terms may be relatively small since they rely upon non-Franck-Condon 
contributions. 

(2) However, even in the Franck-Condon approximation, d',R,, #d\';). Thus laser- 
controlled symmetry breaking, which depends upon dy$ in accordance with 
equation (38), is therefore possible, allowing enhancement of the enantiomer 
ratio for the mi polarized product. 

To demonstrate the extent of expected control, as well as the effect of rnj summation, 
we considered a model of the enantiomer selectivity, that is HOH photodissociation in 
three dimensions, where the two hydrogen atoms are assumed distinguishable. The 
computation is done using the formulation and computational methodology of Segev 
and Shapiro [62]. Below we briefly summarize the angular momentum algebra and 
some other details involved in performing three-dimensional quantum calculations of 
triatomic photodissociation [63]. 

We first specify the relevant quantum numbers n and i which enter the bound-free 
matrix elements in equation (39). For the continuum states, n = {k, u, j ,  mi} where k is the 
scattering direction, u and j are the vibrational and rotational product quantum 
numbers and mj is the space-fixed z projection of j. For the bound states 
i = { E,, Mi ,  Ji, pi)}, where Ji, M i  and pi are the bound state angular momentum, its 
space-fixed z projection and its parity respectively. The full (six-dimensional) bound- 
free matrix element can be written as a product of analytical functions involving k^ and 
(three-dimensional) radial matrix elements: 

(E,~ ,v ,~7~j ,~- ld lEi ,Mi ,J i ,Pi>  
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216 M. Shapiro and P. Brumer 

where D are the rotation matrices, p is the reduced mass, kUj is the momentum of the 
products and P ( E ,  J ,  u, j ,  AIEiJipi) is proportional to the radial partial wave matrix 
element [63] ( E ,  J ,  M ,  p, u, j ,  A, q-ldlEi,  Mi ,  J i ,  p i ) .  Here A is the projection of J along the 
body fixed axis of the H-OH (CM) product separation. 

The product of the bound-free matrix elements in equation (65), which enter 
equation (39), integrated over scattering angles and average over the initial Mk( = M i )  
quantum numbers ( M i  = M ,  since both IEi) and IEk) arise by excitation, with linearly 
polarized light, from a common eigenstate) 

(2Ji-k 1)-1 df; <Ek, Mi,J*,pkldlE, k u?j,m> q ' - ) ( E ,  k u,j, mj, 4-ldlEi? M i ? J i , P i >  
Mi s 

Here J i =  J k  has been assumed for simplicity. Equation (66) is a generalized version 
of equation (48) [63]. 

These equations, in conjunction with the artificial channel method [63] for 
computing the t-matrix elements, were used to compute the ratio Yof the HO + H (as 
distinct from the H +OH) product in a fixed mj state. Specifically, figure 17 shows the 
result of first exciting the superposition of symmetric plus asymmetric vibrational 
modes [(l, 0,O) + (0, 0, l)] with J i  = J k  = 0 in the ground electronic state, followed by 
dissociation at 70 700cm-' to the B state using a pulse width of 200cm-'. Results 
show that varying the time delay between pulses allows for controlled variation of Y 
from 61 to 39%! 

200 
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Figure 17. Contour plot of percentage H O f H  (as distinct from H f O H )  in HOH. The 

ordinate is the detuning from E,, = %E2 -El); the abscissa is the time between pulses (from 
~151). 
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Laser control of photochemical reactions 217 

Finally we sketch the effect of a summation over product mj states on symmetry 
breaking and chirality control. In this regard the three-body model is particularly 
informative. Specifically, note that equation (64) provides dpl in terms of products of 
matrix elements involving IE, n, a-  ) and IE, n, s-). Focus attention on those products 
which involve both wavefunctions, for example A,,  S,*, . These matrix element products 
can be written in the form of equation (66) where q and q’ now refer to the antisymmetric 
or symmetric continuum states, rather than channels 1 and 2. Thus, for example, A,,S$, 
results from using IE, n, a -  ) in equation (65) to form A,, and IE, n, s- ) to form S:,. The 
resultant Aa,S:l has the form of equation (66) with t(@ and t(4’) associated with the 
symmetric and antisymmetric continuum wavefunctions, respectively. Consider now 
the effect of summing over mi. Standard formulae [62,63] imply that this summation 
introduces a 61,0 which, in turn forces A=l’ via the first and second 3j symbol in 
equation (66). However, a rather involved argument [64] shows that 
t-matrix elements associated with symmetric continuum eigenfunctions and those 
associated with antisymmetric continuum eigenfunctions must have A of different 
parities. Hence summing over mj eliminates all contributions to equation (64) which 
involve both 115, n, a - )  and IE, n, s- ). Specifically, we find [64] that after mj summation 

di!) u = d!?) t i  = 1 (ISsiI’ + IAaiI’L (67) 

That is, natural symmetry breaking is lost upon mj summation, both channels q = R 
and q = L having equal photodissociation probabilities, and control over the enan- 
tiomer ratio is lost since the interference terms no longer distinguish the q = R and q = L 
channels. (As an aside we note that control is not possible in collinear models since, in 
that case, d,  and d,  cannot both couple to the same electronically excited state.) 

Having thus demonstrated the principle of mj  selected enantiomer control it 
remains to determine the extent to which realistic systems can be controlled. Such 
studies are in progress. 

6. Control of photocurrent directionality 
In this section we demonstrate that it is possible to control the product angular 

distribution using the scheme outlines in 9 1.3. Our specific application is to the case of 
photoionization so that the result is control over the direction of the photocurrent 
induced by the interference. An alternative method of controlling differential cross- 
sections by varying the degree of elliptic polarization of the light source has been 
described elsewhere [S]. 

Properties of a photocurrent generated in a semiconductor are usually controlled 
by a bias voltage [65]. The role of this voltage is to give thermodynamic preference to the 
flow of photoelectrons in one direction (the forward or backward direction in a p-n 
junction.) In a p- or n-type semiconductor the probability of carrier photoemission 
(from a single impurity) without an external voltage is anisotropic only inasmuch as the 
crystal possesses mass or dielectric constant anisotropies, but the probabilities of 
emission backward and forward along a given crystal axis are equal. Although 
photocurrents are commonly produced by laser illumination, the laser coherence does 
not affect the process. 

Here we describe a scheme [S] for generating and controlling photocurrents 
without bias uoltage, relying instead on the coherence of the illuminating source. The 
method is an application of the scenario of 9 1.3 to the photoionization of bound states 
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218 M. Shapiro and P. Brumer 

of donors. Specifically, a superposition of two bound donor (or exciton) states is 
photoionized by two mutually phase-locked lasers at slightly different frequencies with 
the same polarization axis. The result is a current along the direction of polarization. 
The realization of the scheme is discussed for shallow-level donors in semiconductors. 

Consider a semiconductor doped with shallow-level donors. The bound-state 
wavefunction of such a donor is successfully described by the hydrogenic effective-mass 
theory [66] with wavefunction 

X,(r)=(rln)= V-'12 B,,,u,(r)exp(ik* r)dk. (69) 

Here uk(r) is the conduction-band Bloch state correlated to the asymptotic free-electron 
momentum hk, Vis the normalization volume and B,,, , is the corresponding Fourier 
component of the hydrogenic wavefunction envelope x,,. For semiconductors with 
effective-mass anisotropy, the x,, are evaluated variationally [67-701. Although the 
theory described below holds for any superposition of bound donor states, a 
superposition of 11s) and 12p0) states will be considered explicitly. For these cases a 
simple variational procedure [70], whose results agree reasonably well with those of 
more refined procedures [67-711, yields 

Here the coordinates (normalized to the effective Bohr radius a* = h2/m,e2) coincide 
with the main axes of the cubic crystal. Depending on the ratio y = rnl/mII (the parallel 
direction coinciding with z), the parameters Q and b vary between a = b = 1 for nearly 
isotropic materials with y = 1 (e.g. GaAs, GaSb or InAs) and u z $ n  and b 
for highly anisotropic materials (e.g. Si or Ge) with y<< 1. 

Let a superposition of the 11s) and ( 2 p 0 )  states be prepared by some coherent 
process. As pointed out before, this can be achieved by a short coherent laser pulse or 
various other means. It is possible to discriminate against the excitation of the 12p, 1)  

states either by frequency tuning (e.g. the 2p, 1-2p, splitting is about 5 meV in Si), or by 
linearly polarizing the laser along the z axis. Consider now the simultaneous excitation 
of this superposition state to a kinetic energy level E ,  in the conduction-band 
continuum by two z-polarized infrared or visible lasers with frequencies w , ~  and oZp,; 
the former lifts the 11s) state to E ,  and the latter lifts the 12p,) state to E,. These 
excitations involve the energy conservation relation 

Here the n-state energy is measured from the conduction-band edge and the last term 
accounts for the emission ( p  > 0) or absorption (p < 0) of p phonons of frequency o. For 
simplicity, we shall use the zero-phonon-frequency line [71,72]; hence, h a l s  = E k  

In what follows we consider only electric-dipole-induced optical transitions 
with the electric field along the z-axis. The electric dipole transition 

+ F l S L  h%p* = E ,  + IE2poJ. 
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Laser control of photochemical reactions 219 

amplitudes from an impurity state In) to the asymptotic (far from impurity) plane wave 
(r(k)= V-1’2exp(ik.r)uk(r) is 

The last factor is, using equation (69), simply given as 

(73) 
0 

(kl -ih- In) = hk,(kln) = hk,B,, k. az 

I$) = C I I 1 )  + c212), 

We now consider the photoionization of the superposition state 

(74) 
where 1 denotes the 1s state and 2 the 2p0 state. We let a z-polarized two-colour source, 
whose electric field is given as 

sz(t)=E1 cos (w,t + 41) + E 2  cos (wzt + 4 2 )  (75) 

act on this superposition state. The rate (probability per unit time and unit solid angle) 
of photoemission to a conduction state with momentum hk resulting from this action is 

(76) 
2R P(CO~~)=TP(~)I C I exp(-i4n)&,C,(kICL,In)12. 

n = 1 , 2  

Here, 

and p(k) is the density of final states. The Franck-Condon factor for the zero-phonon- 
frequency line has been set here to unity. 

Denoting c,= Ic,~ exp(ia,) and using equations (72) and (73) in equation (76) gives 
the form 

P(C0S 0) = 

[Al[Bls,k12 fA21B2po,k12 + ‘OS (cll -O(2-41 + 4 2  f a l 2 ) l B I ,  kBZpo,kll cos2 e, 
(78) 

where 
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220 M. Shapiro and P. Brumer 

The evaluation of P(cos 6 )  requires the Fourier components Bn, k' For the present 
choice of impurity states and z-axis these components are obtained from equation (70) 
as 

8~413~2b V -  1 /2 

G 2  B l s , k =  , 

with 

G = G(COS, 0) = [ 1 + y(a*ak)2 + (b2 - a'yy)(~*k)~ COS, Q]. (81) 
It is clear from equation (80) that al,=37c. 

Given the above expression, the net current flowing in the z direction is given as 

where z is the free-electron collisional relaxation time, N is the donor concentration in 
reciprocal cubic centimetres and F is the x-y cross-sectional area of the sample. 

We note that contributions from the diagonal A ,  and A ,  terms are odd in cos 0 and 
have vanished, whereas the interference term induces a directional current flow! Thus 
coherent interference contributions result in a controlled directional current flow. 

Several additional remarks are in order. First, the phases 41 and b2 of equation (75) 
contain the spatial phase factors exp(ik- R), where k is the light wave-vector. The 
difference in the spatial phases can be exactly offset by the phase difference a1 - a2 in the 
preparation step (e.g.in a Raman preparation of I$)), or eliminated by phase matching. 
Second, there are substantial experimental simplifications associated with applying the 
photodissociating lasers at  the same time as initiating the preparation of the 
superposition state. Third, two-colour light also causes excitation (via wZpo) of the 11s) 
level to the state at  Ek+IEZpol-IEfsl and of the 12pJ level (via wlJ to the state at 
Ek + lE1,l - IEpJ that is the uncontrolled satellite contributions discussed above. In this 
case, however, these terms contribute to the A and A ,  terms in equation (78) and hence 
do not contribute to degrade the controlled current 1:. 

The magnitude and sign of the current are controllable for a given host material and 
superposition state parameters via first, the optical phase difference 41 - 4,, second, 
the donor number N and/or third, the ionizing field strengths and E, and their 
frequencies w1 and w,. To estimate a typical current, consider the Iz resulting from 
the following parameters: c1 =~,=0.1 Vcm-', k = 5  x lo'cm-', (c,c2(=0.25 and 
z= lO-'"-lO- l 3  s. The latter corresponds to a mean free path hktlrn of 10&1000 A, a 
typical value for the ballistic electrons at  the cited k value. Further N(Si)V 
= lo'* cm-3 Vwhere Vis the effective interaction volume. For a sample of 0.1 x 10 
x 10 pm, V =  10- cm3. Utilizing equation (82), and these parameter values, we obtain 
a current I ,  = 1&100mA. Thus sizeable currents may be readily produced, owing to the 
high quantum efficiency of the silicon photoionization. 
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Laser control of photochemical reactions 22 1 

Equations (79H82) apply, evidently, to photoionization of other Ins) - (n’p,) 
superpositions, where In- n’l = 1, upon substituting the appropriate Fourier coeffi- 
cients Bns, and BnSp,,, k’ It may turn out to be more practical to use other states than 
those discussed above. 

7. Control with intense laser fields 
We now discuss some extensions of coherent control to strong laser fields. Parallel 

work involving other strong-field scenarios has been done by Bandrauk and co- 
workers [46], Bardsley and co-workers [47] Guisti-Suzor and co-workers [48], 
Corkum and co-workers [49] and Nakajima and Lambropoulos [73]. Here we 
concentrate on a strong-field control scenario in which the dependence on the relative 
phase between the two laser beams, and hence on laser coherence, disappears. As a 
result, coherence plays no role in this scenario (except for being intimately linked with 
the existence of the narrow-band laser sources needed for its execution). Although the 
unimportance of coherence means that we lose phase control, the effect still depends on 
quantum interference phenomena. The scenario is therefore called interference control. 

To illustrate interference control we look at the control of the electronic states of Na 
atoms generated by the photodissociation of Na,, a process treated in the context of 
weak-field coherent control in $4. We envisage a scenario, depicted in figure 18, in 
which we employ two laser sources. One laser (not necessarily intense) with centre 
frequency o1 is used to excite a molecule from an initially populated bound state IEi) to 
a dissociative state I E , r n , q - ) .  A second laser, with frequency 02, is used to couple 

I I I I 

9000 

4500 

-4500 

-9000 
4 8 12 16 

R (a.u.1 

Control scenario applied to the photodissociation of the 3Hu state of Na,. For the 
case considered in this paper, ( E i )  corresponds to t‘= 19 with E , = , 9 =  - 6512.8cm-’ and 
( E j )  is u = 3 1  with E v = 3 ,  = -4966.04cm-’. 

Figure 18. 
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222 M. Shupiro and P. Brumer 

('dress') the continuum with some (initially unpopulated) bound states IEj). With both 
lasers on, dissociation to [ E , m , q - )  occurs via one direct, that is (E, )+IE,m,q- ) ,  
pathway and a multitude of indirect, for example IEi)+, m, q - ) + I E j ) + l E , m , q - ) ,  
pathways. The interference between these pathways to form a given channel q at 
product energy E can be either constructive or destructive. As we show below, varying 
the frequencies and intensities of the two excitation lasers strongly affects this 
interference term, providing a means of controlling the photodissociation line shape 
and the branching ratio into different products. 

With this scenario in mind we now briefly discuss the methodology of dealing with 
strong laser fields and the extension of coherent control ideas to this domain. We 
consider the photodissociation of a molecule with Hamiltonian H ,  in the presence of a 
radiation field with Hamiltonian IfR, whose eigenstates are the Fock states Ink,> with 
energy n k h m k .  (In the case of several frequencies the repeated index in n k m ,  implies the 
sum over the modes.) 

Strong-field dynamics are completely embodied [74] in the fully interacting 
eigenstates of the total Hamiltonian H ,  that is HM + H ,  + V ,  where V is the light-matter 
interaction, denoted J(E, m, q-),  a;): 

HI(& m, q-), nk) = ( E  + n&mk)l(& m, q-), n; >. (83) 
The minus superscript on nk is used in exactly the same way as in the weak-field domain; 
it is a reminder that each I(E,m,q-) ,n;)  state correlates to a non-interacting 
I(E, m, q-), nk) = IE, m, q-) ln , )  state when the light-matter interaction V is switched off. 

If the system is initially in the JEi, ni )  = IEi)lni)  state and we suddenly switch on V, 
the photodissociation amplitude to form in the future the product state IE, m, q - ) [ n k )  is 
simply given [74] as the overlap between the initial and fully interacting state 
( ( E ,  m, q-) ,  n ; ( E ,  n i ) .  This overlap assumes the convenient form 

<(E,m, q-1, n , l E i ?  ni)= <(E,m, q-1, nklVG(E+ f n ! $ o k ) l E i >  ni>,  (84) 

by using the Lippmann-Schwinger equation 

< ( E , m , q - ) , n , ( = < ( E , m , q - ) , n k ( +  <(E,m,q- ) ,  n k l V G ( E +  +nkhuk). (85) 

Here G(&)= I/(&-H) and E +  = E +id, with 6-0' at the end of the computation. 
Equation (84) is exact and provides a connection between the photodissociation 
amplitude and the VG matrix element. It is the latter which we compute exactly usinga 
high-field extension of the artificial channel method [75,76]. 

Two quantities are of interest: the channel specific line shape given by 

A(E,~,~,IE, nil= dC;I(~,C;,q-),rz;I~i,ni)I~, (86) s 
and the total dissociation probability to channel q given by 

In equation (87) the sum is over photons that excite the molecule above the dissociation 
threshold. In writing equation (86), diatomic dissociation is assumed, so that m =  k. 

Consider for example the photodissociation of Na, from the IEi) = [u= 19, 'nu) 
initial state, where 2, denotes the vibrational quantum number in the 3r4, electronic 
potential (the potential curves and the relevant electronic dipole moments are taken 
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Laser control of photochemical reactions 223 

from [79]) (figure 18). ( E i )  is assumed to have been prepared by previous excitation 
from the ground electronic state. Excitations from IEi) by o1 and mixing of the initially 
unpopulated IEj) by 0, to the dissociating continua produce Na (3s) + Na (3p) and 
Na (3s) + Na (4s). Computations were done with o chosen within the range 
15430<01 -= 15700cm-' with intensity I ,  z 10" Wcm-2, which is sufficiently 
energetic to dissociate levels of the 3rIu state with v>, 19 to both Na(3s)+ Na(3p) and 
Na (3s) + Na (4s). The second laser has fixed frequency w2 = 13 964 cm- ' and intensity 
I ,  = 3.2 x lo1' W cm-' and can dissociate levels with u 2 2 6  to both products. Under 
these circumstances the contribution of above threshold dissociation is found to be 
negligible. However, cognizance must be taken of the possibility of dissociation of IEi) 
by 0, and of lEj )  by ol. These processes do not interfere and cannot be controlled. 
Hence we must find the range of parameters that minimizes them. 

Figure 19 shows computed line shapes A(E, q, n,lE,, ni) (on a logarithmic scale) as 
a function of the product translational energy E ,  with 02= 13964cm-', 
ol=15546cm-' ,  11=5~5x109Wcm-2  and 12=3-51 x 1 0 1 0 W m - 2 .  Results for 
both the Na (3p)+ Na (3s) and Na (4s) + Na (3s) product channels are shown. Figure 20 
contains similar results, but with o1 = 15 51 1 cm-'. In addition, the line shape for 
excitation with the laser of frequency o1 = 15 456 cm- only (w, laser off) is shown in 
figure 19 for the Na (3s) + Na (4s) product; the Na (3p) + Na (4s) result is similar. 

Consider first A(E, q, n,lE, ni) associated with excitation by a single laser (figure 19, 
dotted curve). The line shape is comprised of a series of non-Lorentzian peaks and dips 
corresponding to resonance contributions from the dressed 0 = 19,20,21 vibrational 
states. The predominant contribution is the direct vi = 19 excitation, with smaller 
v = 20,21 contributions arising from stimulated emission and absorption from and to 

5 

4 

: 3  
r" 
.f 2 

2 1  
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? - I  
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log [ A(E, q, ~ , J E ,  ni) as a function of E (where the Na (3p) + Na (3s) asymptote defines 
the zero energy): (-), Na (3s)+Na (3p) product with both lasers on; (---) Na (3s) 
+ Na (4s) product, with both lasers on; (. . . . . .) Na (3s) + Na (4s) product with only one laser 
(a1) on. Here w l = 1 5 4 5 6 c m ~ ' ,  w2=13964cm-', I , = 5 . 5 ~ 1 0 ~ W c m ~ ~  and 1 ,=351  
x 10'''Wcm-Z. 

E (ern-') 
Figure 19. 
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Figure 20. As in figure 19 but with w1 = 15 51 1 cm-': (-), Na(3s)+Na(3p) product with 

both lasers on; (- - -), Na (3s) + Na (4s) product with both lasers on. 

the continuum. Further, the overall shape between the peaks shows Fano-type 
interference between the photodissociation pathways arising from the pairs of adjacent 
vibrational states. Since significant dissociation is observed from states other than the 
initially populated ui= 19, it is clear that the power broadening is of the same order of 
magnitude as the vibrational level spacing. 

With both o, and o2 lasers on, each peak splits into two peaks in a manner which is 
dependent both upon asymptotic channel (compare solid and broken curves in figures 
19 and 20) and frequency w1 (compare figure 19 with 20). An analysis of this structure is 
provided below. Here we note the significant implication that by varying o1 we can 
control the channel specific line shapes A(E, nk(ci, ni). For example, comparing figures 19 
and 20 shows that the increase in w1 results in a shift of the dominant peaks to higher E .  
Products at E zz 9025 cm ~ are strongly enhanced relative to the case in figure 19 
products at E z  8980 cm- are suppressed, etc. Tuning w2 or changing the laser 
intensities also changes the line shapes, as discussed elsewhere [43]. 

Integrating A(E, q, nk(ci, ni) over E (equation 87) for various w1 values give P(q) 
as a function of wl. The result of these computations are shown in figure 21 for both 
Na (3s) + Na (3p) (solid curve and Na (3s) + Na (4s) (broken curve) channels, with 
11=8.7x 1 0 ' W ~ m - ~ ,  12=3-51 x 10Wcm-2 and 02=13964cm-' .  The probability 
P(q) is seen to oscillate strongly as a function of wl, with the distance between the peaks 
(or dips) being the vibrational spacing between u = 31 and 32. The oscillations for the 
two product channels are out of phase. Hence, for example, the probabilities of 
producing Na(3s)+Na(4s) and Na(3s)+Na(3p) at  o1 = 15494cm-1 are 0198 and 
0.730, respectively. The reverse situation occurs at w1 = 15 573 cm- where the total 
dissociation probability remains 0.93 but where 68% of product is Na (3s) + Na (4s). 
Thus varying o1 provides a straightforward method of controlling the branching ratio 
into final product channels. Furthermore, and significantly, computations show that 
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Figure 21. 

arbitrarily changing the relative phase between the o1 and oz does not alter figures 19- 
21, indicating that the control process is independent of the relative laser phase. This is 
consistent with the model discussed below. 

Reducing the laser power in these computations [43] narrows the frequency range 
over which the product probability oscillates, clearly indicating that this range is at 
least partially determined by the power broadening. 

The qualitative behaviour seen in figures 19-21 can be readily understood in terms 
of a simple model which assumes excitation of the initial state 11) = IEi, n , ,  n , )  with 
laser w1 to the continuum IE,) = I(E, 4-), n1 - 1, n, ) ,  which is coupled to state 
12) = IEj, n , ,  n ,  + 1) with laser 02. If these are the only contributing states, then the 
photodissociation amplitude is given by 

<E,lVW)l1> =<~.lVl1)<1IG(&)l1) +<EqIV12)<2IG(&)l1), (88) 

where &= E +  + ( n ,  - l)hw, +n2hw2. Using (&-H,-V)G(&)= 1 ,  we obtain coupled 
equations for the matrix elements of G which can be solved. Substituting the results 
into equation (88), gives 

where El = Ei + n1 h a ,  + n2hw,, E ,  = E j  + ( n ,  - l ) h o ,  + (a2 + l)hw2 and za, b(a, b = 1,2) 
is given by 

The E dependence of equation (89) can be exposed by substituting 
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into equation (89). Denoting n,,@) at this energy by 7 ~ , , ~ ,  we have 

where 

2x+ =(Ei +?TI , ,+  ho,) +(Ej+ ',,, + hw2) 

(Ic(Ei+ ~ 1 , 1 +  ho,)-(Ej+ ~ 2 , 2  + hwJ12 +%, 2'2.1) '". (92) 

xk are the eigenvalues associated with the diagonalization of the matrix coupling the 
two dressed states, of energy E i + n l , ,  +hw,, and Ej+n, , ,+hw,  via the continuum. 
The real and imaginary parts of n,,,(a= 1,2) give the shifts and broadenings of the two 
levels. 

Equation (91) shows photodissociation occurring via two pathways, 

n, - 1, n2) ;  interference between them can be constructive or destructive, depending on 
the relative sign of the two terms. This interference can be manipulated by varying the 
laser frequencies. The double-peak structure seen in figures 19 and 20 is consistent with 
the form of equation (91) wherein two peaks are predicted as the function of 8, at the 
two roots of the equations d-x* = O .  For example, in the case of figure 19, the first 
double peak arises from the interaction between the dressed u = 19 and u = 3 1 levels of 
the state whereas the decrease in photodissociation (compared with the dotted 
curve) in the middle of the double-peak results from the destructive interference 
between them. A similar explanation applies to the second and third double peaks, 
which result mainly from the combined excitations of u = 20 and 32 and of u = 2 1 and 33, 
respectively. Note that the locations of the peaks are channel independent but that the 
ratio of the heights of the peaks, given by the ratio of I(EqIV11)(&-Ej-hw2-n2,,) 
+ ( EqlV12)n2, 1' evaluated at d = x + and x- respectively, depends strongly on the 
laser frequencies, intensities and the channel index q. Thus equation (92) encompasses 
the channel dependence of the interference and hence the control over product 
possibilities. 

Note also that equation (91) is consistent with a photodissociation amplitude 
wherein control of the line shape and product probabilities is independent of the 
relative phase of the two routes. That is, if 61 and 6, are the phases of the two lasers 
(including the spatial phases K, * r, K, - r), then absorption of an o1 or w2 photon 
contributes a phase factor exp(i6,) or exp(i6,) to the matrix elements of V. Similarly, 
stimulated emission of one photon ofw, or w2 contributes a phase factor exp ( -kPl) or 
exp(-$,) to the matrix elements of V. Therefore the second term in denominator of 
equation (91) carries an overall phase factor exp (i4,)exp (i41 -i&) =exp which 
is the same as the phase factor in the first term. The relative phase of the two routes, 
which enters the interference term, is therefore independent of both 41 and 4,. 

This model fails, however, to include excitation and dissociation of neighbouring 
vibrational states of [Ei) and [Ej). Nonetheless the computations in figures 19-21, 
which incorporate all vibrational states, clearly demonstrate the desired control. 
Further computations [45], which include rotations have also been performed. 
Inclusion of these rotational states leads to a series of multiple peak-and-dip structure 
in the line shape corresponding to the resonance contributions of multiple rotational 
states. Because of this, the dependence of the channel specific dissociation yield on o1 
changes, but control over line shapes and product yields is still strong. 

l ~ i ~ n l ~ n ~ ) ~ l ( ~ ~ ~ - ) ~ ~ ~ - l ~ ~ ~ )  and IE i ,n , , n , )~ lE j ,n l - l , n ,+ l )~ I (E ,q - ) ,  
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8. Conclusions 
Our  discussion makes clear that the characteristic features which we invoke in 

order to control chemical reactions are purely quantum in nature. There is, for 
example, little classical about the time-dependent picture where the ultimate outcome 
of the de-excitation, that is product H + HD or H, + D depends entirely upon the phase 
and amplitude characteristics of the wavefunction. Indeed, as repeatedly emphasized 
above, if for example collisional effects are sufficiently strong as to randomize the 
phases, then reaction control is lost. Hence reaction dynamics are intimately linked to 
the wavefunction phases which are controllable through coherent optical phase 
excitation. 

These results must be viewed in the light of the history of molecular reaction 
dynamics over the past two decades. Possibly the most useful result of the reaction 
dynamics research effort has been the recognition that the vast majority of qualitatively 
important phenomena in reaction dynamics are well described by classical mechanics. 
Quantum and semiclassical mechanics were viewed as necessary only insofar as they 
correct quantitative failures of classical mechanics for unusual circumstances and/or 
for the dynamics of very light particles. Considering reaction dynamics in traditional 
chemistry to be essentially classical in character therefore appeared to be essentially 
correct for the vast majority of naturally occurring molecular processes. Coherence 
played no role. The approach which we have introduced above makes clear, however, 
that coherence phenomena have great potential for application. The quantum phase is 
always present and can be used to our advantage, even though it is irrelevant to 
traditional chemistry. By calling attention to the extreme importance of coherence 
phenomena to controlled chemistry we herald the introduction of a new focus in atomic 
and molecular science, that is introducing coherence in controlled environments to 
modify molecular processes, thus defining the area of coherence chemistry. 
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